Climate Change and the Increase in Allergic Diseases

Rosalyn Baker, M.D., M.H.S.
Board Certified Pediatric and Adult Allergist and Immunologist
Background

- University of Miami School of Medicine
- Internal Medicine Residency, Case Western University Hospital of Cleveland
- Clinical Faculty, University of Maryland, Baltimore, MD
- M.H.S, Johns Hopkins School of Public Health
- Research Fellow, Johns Hopkins Allergy Dept.
- Allergy & Immunology Fellow, National Institutes of Health, Bethesda, MD
- Board Certified Allergist & Immunologist
- Allergy Section Chief, MedStar Southern Maryland Hospital
- Medstar SMH Asthma & Allergy Center
- Medical Director, & Rosalyn Baker, MD, PLLC
Speaker Disclosure
Declaration: None
Climate Change Objectives

• Increased carbon dioxide emissions
 – Increased heat
 – Increase pollen counts
 – Longer pollen season

• Increased Rainfall/ indoor humidity

• Increased healthcare/economy costs

• Recommendations for healthcare providers
Pollen map and count
Increased Pollen Counts

- Fossil fuels, coal, oil cause an increased atmospheric carbon dioxide (CO$_2$) emissions
- Increased CO$_2$ cause increased plants growth
 5 to 10 gram per plant (CO$_2$ 280→370 ppm) from 1990 to 2000
- Plants exhibit enhanced photosynthesis and reproductive effects and produce more pollen
- Moreover, the plants flower earlier in urban areas than in corresponding rural areas with earlier pollination of about 2–4 days.

Change in length (day of year, days) of ragweed pollen season as a function of latitude for National Allergy Bureau and Aerobiology Research Laboratories sites along a south–north latitudinal gradient

- Northern climates, warmer temperature compared from 1995 to 2009
- 16 days increased Ragweed season in (Minneapolis)
- 27 days increased Ragweed season in Saskatoon, Canada
- 1 day increased Ragweed season in Oklahoma City

Increased Allergen Sensitization

- Increased Allergic rhinitis, conjunctivitis
- 1 out 12 individuals have asthma

- Allergic Asthma
 - 60% Pediatric Asthma is allergen related
 - 40% Adult Asthma is allergen related

- Allergic Asthma exacerbations
 - Declining FEV1 or FVC during season
 - Declined Lung Function

- Increased Adult onset asthma at an older age,
- Younger onset allergic diseases in children
Other Effects of Climate Change that impact Allergic Patients

- Poor air quality (heat, wildfires, drought, ozone)
 - Wildfire smoke produces large amounts CO, CO2, NOx, O3(ozone), PM (particular matter), and VOCs (volatile organic compounds)

- Asthma morbidity/mortality
 - Ozone also demonstrates an adjuvant effect, because individuals exposed to ozone at levels of 0.16 to 0.25 ppm demonstrate an increased level of response to inhaled allergen.
 - Ozone cause increase in airway inflammation markers

- Increased rainfall/humidity
 - Allergic rhinitis molds
 - Increased VOCs

SHEA ET AL, J ALLERGY CLIN IMMUNOL VOLUME 122,
Increased Rainfall cause increase indoor humidity

- Increased humidity (>50%)
 - Mold spores and Dust Mites growth
 - Increased allergic rhinitis allergen sensitization & asthma exacerbation
- Building damage
 - Susceptible to Rodents
 - Cockroaches, Mice, Rats (Allergens)
- Increased economical and emotional stressors linked to sick building syndrome
 - Work absenteeism due to respiratory illness
 - Increased anxiety due to lack of control of building water repairs at work/home
 - Unemployment, increased basement inhabitants
Indoor dampness (A) Visible mold (B) and rhinoconjunctivitis

A

<table>
<thead>
<tr>
<th>Study</th>
<th>EE (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tham et al 2007</td>
<td>2.38 (1.51, 3.75)</td>
<td>7.51</td>
</tr>
<tr>
<td>Civelek et al 2010</td>
<td>1.65 (1.36, 2.01)</td>
<td>40.70</td>
</tr>
<tr>
<td>Pirastu et al 2009</td>
<td>2.08 (1.32, 3.28)</td>
<td>7.50</td>
</tr>
<tr>
<td>Simoni et al 2005</td>
<td>1.63 (1.33, 2.00)</td>
<td>37.78</td>
</tr>
<tr>
<td>Ibargoyen-Roteta et al 2007</td>
<td>1.34 (0.64, 2.80)</td>
<td>2.87</td>
</tr>
<tr>
<td>Tischer et al 2011</td>
<td>1.36 (0.56, 3.28)</td>
<td>2.00</td>
</tr>
<tr>
<td>Tischer et al 2011</td>
<td>0.58 (0.22, 1.53)</td>
<td>1.65</td>
</tr>
<tr>
<td>I-V Overall (I-squared = 28.7%, p = 0.209)</td>
<td>1.67 (1.48, 1.89)</td>
<td>100.00</td>
</tr>
<tr>
<td>D+L Overall</td>
<td>1.68 (1.41, 2.00)</td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Study</th>
<th>EE (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tham et al 2007</td>
<td>1.53 (1.00, 2.34)</td>
<td>16.09</td>
</tr>
<tr>
<td>Pirastu et al 2009</td>
<td>2.08 (1.32, 3.28)</td>
<td>13.89</td>
</tr>
<tr>
<td>Simoni et al 2005</td>
<td>1.63 (1.33, 2.00)</td>
<td>70.02</td>
</tr>
<tr>
<td>I-V Overall (I-squared = 0.0%, p = 0.573)</td>
<td>1.67 (1.41, 1.98)</td>
<td>100.00</td>
</tr>
<tr>
<td>D+L Overall</td>
<td>1.67 (1.41, 1.98)</td>
<td></td>
</tr>
</tbody>
</table>
Exposure to *A alternata* in US Homes is Associated with Active Asthma

The National Survey of Lead and Allergens in Housing (831 units from 75 locations) found increasing Alternaria mold levels correlated with asthma.

Increased Dust Mites Exposure

• Some important household mites:
 • *Dermatophagoides pteronyssinus*
 • *Dermatophagoides farinae*
 • *Blomia tropicalis*

• Live in bedding, upholstered furniture, stuffed animals and carpet.
• Feed on human skin scales.
• Grow best in relative humidity above 50-70%.

Climate Change impacts on allergic diseases

- Increased CO2 emissions
 - Increased Heat
 - Increased pollen counts
 - Increased pollen season

- Increased Rainfall/Flooding
 - Increased humidity
 - Increased mold
 - Poor living conditions

- Increased healthcare and economic costs
Healthcare costs of allergic diseases

- Allergic disease affects more than 50 million people in USA
- Fifth leading chronic disease
- Annual cost $14.4 billion, medications and physician visits.
- 16.7 million office visits each year
- 2 million ER visits for asthma
- 465,000 asthma-related hospitalizations (USA)
- $8 million - indirect costs from asthma
- Major reason for adult employee sick leave
Increased Healthcare Costs

- Medications costs
 - Overuse, tolerance, ineffectiveness
 - Asthma inhalers

- Allergen Immunotherapy injections (costs, risks)
 - Allergy injections (Co-pays, Allergen Serum)
 - Less insurance coverage

- Monoclonal Immunotherapy Omalizumab
 (coverage by insurance, annual >$10,000)
Healthcare Recommendations for allergic rhinitis patients

1. Identify patient allergens
 1. Skin Prick Testing or in-vitro immunoassay (CAP RAST) lab testing

2. Environmental Controls
 1. Pollens (Trees, Grasses, Weeds)
 2. Molds, Dust Mites, Pets, Mice, Cockroach, Feathers

3. Allergen treatment
 1. Medications
 2. Allergen Immunotherapy (SCIT, SLIT)
 3. Monoclonal antibodies

4. Prevention/Control (asthma, chronic sinusitis)

5. Early intervention
Pollen Allergen Avoidance

- Remain indoors with windows closed at peak pollen times
- Wash hair and clothing after being outside for extended periods; have handy a new set of clothes
- Use air-conditioning, where possible
- Install car pollen filter
- Do not line dry clothing outside
- Window pollen screens
Home Evaluations

- Assess Indoor Dampness or Visible Mold
- Humidity Monitor
- Dehumidifier
- Air Purifier
- Ambient Air Mold Sampling
- Mold Remediation
- Building Repairs
- Effective mouse allergen mitigation = integrated pest management (IPM)
- Opportunity for public health and legal partnerships for vulnerable populations.
- Workplace evaluation
Reducing Dust Mite Allergen Exposure in the Home

First Line
• Mattress, pillow DM covers
• Wash bedding, Hot Water, weekly
• Remove stuffed animals
• Control humidity (<50%)

Second Line
• Remove carpets
• Remove upholstered furniture
• HEPA vacuum cleaners
• Acaricides in fabrics
• Tannic acid
• Air purifiers unlikely to help

Dust mite on bedding encasement material.
John Vaughan and Thomas Platts-Mills
Recommendations for Allergen Avoidance for Pet Allergic Patients

• First Line
 • Do not have pets
 • Find existing pet a new home

• Second line
 • Keep the pet outside at all times
 • Isolate the pet from the bedroom
 • Keep bedroom door closed
 • Air purifiers
 • Wash pet regularly weekly-biweekly
Pulmonary Function Tests (PFT or Spirometry)
Subcutaneous Allergen immunotherapy injections (SCIT)
Sublingual immunotherapy (SLIT)
In Conclusion

- Increased carbon dioxide levels
 - Increase heat with longer growing season over larger geographic area
 - Increase pollen production
 - Increase rain/floods/humidity in some areas creates more mold, poorer living conditions
- Leads to more numerous patients with more severe allergies
- Creates more health care demand, expense and poorer quality of life
Questions
Case 1- Severe Pollen Allergy

24 y.o. WF with severe Grass Pollen allergy unable to tolerate allergen injections (anaphylaxis). Moved to my Maryland for college.

- Antihistamine, Montelukast, and Daily maintenance asthma inhaler

Mowing grass May 2014 and developed SOB, throat closing sensation, hives, and blurred vision.

- JHU Eye clinic, optical nerve inflammation secondly to anaphylaxis

- Initiated monoclonal immunotherapy, Omalizumab
 - Add-on Allergen Immunotherapy Injections,
 - Discontinue Omalizumab after maintenance dose allergy injection
Case 2- Medication Overuse

- 62 y.o. WM experiences hives, eyelid swelling, sneezing after outdoor exposure in Spring & Summer season

- Benadryl 50mg (2 tabs) every 4 hours while awake (8 tabs daily)
- Zyrtec, Allegra, Claritin, Singular are ineffective
- Advair 250/50 mcg BID inhaler
- Allergen immunotherapy injections x 3.5 years
- Benadryl 25-50mg tabs QD PRN
- Albuterol PRN
Case 3- Older population

- 60 y.o. AAF with minimal allergic rhinitis requires occasional Zyrtec.
- Chronic Cough, itching throat and Postnasal drainage.
- Diagnosed with Asthma.
- Initiated Allergen immunotherapy injections.

Caution:
- Older population
 - May not be a candidate for allergy injections due to underlying cardiac disease.
 - Earlier intervention is recommended.